

Heizen von naturnahen Badegewässern

Christoph Fink, B.Eng. IOB-Kongress 2025

1. Einleitung

- 1. Abgrenzung: Öffentlich vs. Privat
- 2. Schwimmteich vs. Naturpool (Fokus: private Naturpools)
- 3. Ziel: normkonformes, effizientes Heizen bei stabiler Biologie

Begriffe & Abkürzungen

- 1. WT = Wärmetauscher (getrennter Heizkreislauf)
- 2. COP = Coefficient of Performance (Leistungszahl)
- 3. ΔT = Temperaturdifferenz (Kelvin)
- 4. K = Kelvin (Temperaturdifferenz entspricht °C-Differenz)
- 5. A = Fläche (m²), H = Höhe (m)
- 6. WP = Wärmepumpe
- 7. GIH = globale horizontale Einstrahlung
- 8. opak = lichtundurchlässig → Ein Material oder Medium lässt kein Licht durch. Gegenteil von "transparent" (durchsichtig) oder "transluzent" (durchscheinend

2. Rechtlicher & normativer Rahmen

- 1. BHygV § 69: Kleinbadeteiche künstliche Erwärmung verboten
- 2. ÖNORM L 1128:2015, 7.3.8 Heizen nur via getrenntem Kreislauf (WT); starke ΔT vermeiden
- 3. ÖNORM EN 15288-2:2019-04-15 "Schwimmbäder Teil 2: Sicherheitstechnische Anforderungen an den Betrieb", 7.7.6 Heizung/Lüftung/Klima
- 4. Technische Richtlinien des VÖSN Stand der Technik (Naturpool heizbar; Schwimmteich nicht)

3.1 Heizquellen – Überblick

- 1. Luft-Wärmepumpe
- 2. Sole/Erdwärme
- 3. Biomasse (Pellets/Hackgut)
- 4. Gas/Öl
- 5. Fern-/Nahwärme
- 6. Solarthermie (ergänzend) mit Pufferspeicher (Lastmanagement)
- 7. Biogas

Luft-Wärmepumpe mit integriertem Wärmetauscher

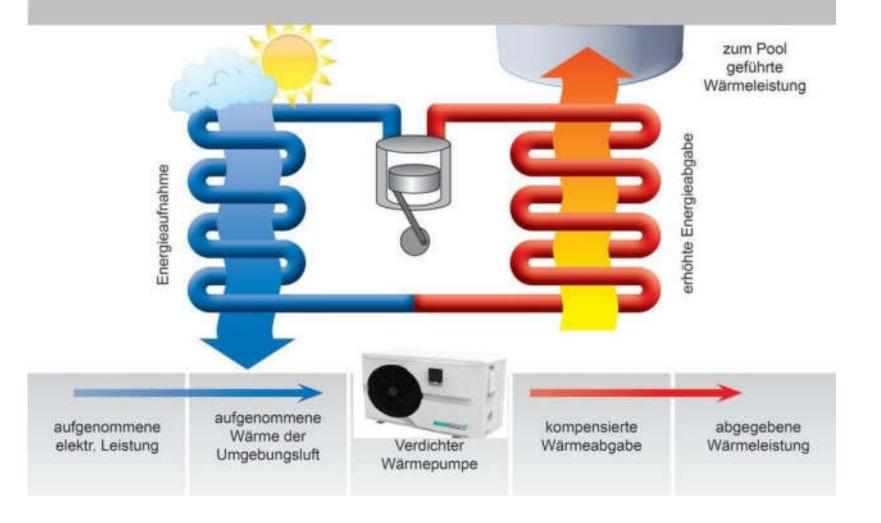
COP (Coefficient of Performance) = Leistungszahl einer Wärmepumpe.

Formel:

$$COP = \frac{\text{abgegebene Heizleistung (kW)}}{\text{aufgenommene elektrische Leistung (kW)}}$$

→ Beispiel: Eine Wärmepumpe liefert 12 kW Wärme, verbraucht dafür 3 kW Strom →

$$COP = \frac{12}{3} = 4,0$$


Das heißt: Aus 1 kW Strom werden 4 kW Wärme.

Funktionsschema einer Wärmepumpe

Sole-/Erdwärme (Erdsonde/Flächenkollektor)

Biomasse (Pelletskessel/Hackgut)

Gas/Öl (Kessel/Hybrid)

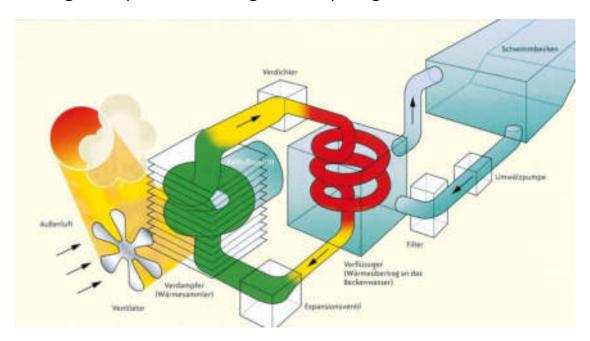
Fern-/Nahwärme

Solarthermie (Kollektor/Feld) und Pufferspeicher (Hydraulikstation)

Biogas

- 1. Wärmepumpen: COP ~3–5 (Quelle & ΔT-Hub entscheidend)
- 2. Biomasse: erneuerbar; Lager/Asche/Service
- 3. Gas/Öl: hohe Leistung, CO₂/NOx-Emissionen
- 4. Fern-/Nahwärme: abhängig von Netz/Vorlauftemperaturen
- 5. Solarthermie: wetterabhängig eher Zusatzquelle

COP & Effizienzvergleich


April-Oktober, +3 K Setpoint, Wärmetauscher immer getrennt

Nr. Heizquelle	Typische Effizienz (COP/η)	Praxis-Hinweis (kurz)
1 Luft-Wärmepumpe	COP 3,00-5,00	günstig & verbreitet; COP sinkt in kühlem Frühling/Herbst, steigt im Sommer
2 Sole-WP (Flächenkollektor)	COP 4,00-5,50	konstante Quellentemp.; sehr stabil, höhere Investition
WP (Tiefenbohrung/Geothermie)	COP 4,50-6,00	höchste WP-Effizienz; Bohrkosten beachten
4 Pellets	η ≈ 0,90	erneuerbar; Lager/Asche; gute Ökobilanz
5 Hackgut	η ≈ 0,80 – 0,85	für größere Leistungen; Platz & Logistik
6 Heizöl	η ≈ 0,85–0,95	fossil; schnell verfügbar, aber hohe Emissionen
7 Erdgas	η ≈ 0,90–0,98	fossil; etwas "sauberer" als Öl; schnelle Leistung
8 Solarthermie	n. a. (η 0,30–0,60)	stark wetterabhängig; ideal ergänzend mit Puffer
Biogas-Abwärme/BHKW- Wärme	n. a. (Wärme 70–90 % nutzbar)	sehr sinnvoll, wenn verfügbar (Abwärmenutzung)
10 PV + WP (Eigenstrom)	systemisch COP 3–5	ökologisch top: Strombedarf der WP durch PV decken

3.2 Wärmeübergabe (Wärmetauscher)

- 1. Typen: Platten-WT, Rohrbündel (Shell & Tube), Koaxial (Rohr-in-Rohr)
- 2. Material: Titan (bio-neutral, korrosionsfest); kein Kupfer im Poolpfad
- 3. Feinfiltration vor WT (falls Poolwasser-seitig)
- 4. Ziel: gleichmäßige Temperaturführung, keine Sprünge > 5 K

Wärmetauscher-Typen

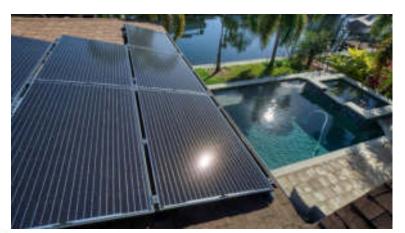
Plattenwärmetauscher

Rohrwärmetauscher

3.3 Wärmeeinbringung in das Poolbecken

1. Flächenheizung (Betonkern/Estrich): sehr gleichmäßig, träge; eigener Kreislauf – keine Spülpflicht

 2. Düsen: wenige Einströmer; mehrfach tägliche Umwälzung gegen Stagnation/Verkeimung


₹

Vergleich

für den 8 × 4 m, 1,50 m tiefen Pool (48,00 m³), Abdeckung vorhanden, Heizoption Flächenheizung (Betonkernaktivierung) vs. Düsen (direkter Eintrag).

Grundzahlen (für die Einordnung)

- Wasserenergie pro 1,00 K: 55,81 kWh/K (48 000 kg × 4,186 kJ/kgK = 200 928 kJ = 55,81 kWh).
- Ziel: $+1,50 \text{ K/Tag} \Rightarrow 83,72 \text{ kWh/Tag}$ nur fürs Aufheizen.
- Typische Tagesverluste mit guter Abdeckung (evaporation ≈-95 %, Strahlung/"Luftwärmeverlust" ≈-80 %): ≈ 42,14 kWh/Tag.
- ⇒ Gesamtbedarf pro Tag bei +1,50 K: 83,72 + 42,14 = 125,86 kWh (thermisch) (entspricht z. B. 31,47 kWh Strom bei COP = 4,00).

Vergleichstabelle:

Kriterium

Heizprinzip

Reaktionsgeschwindigkeit

Temperaturgleichmäßigkeit

Zusatzverluste

Leistungsdichte / Max. Ramp-Up

Energieeffizienz (mit Abdeckung)

Halten der Temperatur (Tagbetrieb)

Nachtauskühlung ausgleichen

Biologie/Strömung

Flächenheizung (Betonkernaktivierung)

Wasser wird über im Boden/Beton liegende Heizrohre erwärmt; Wärmeabgabe über große Fläche

Träge (Wärme geht erst in Beton, dann ins Wasser): spürbarer Effekt meist nach 3-6 h, stabil nach 6-12 h

Sehr gleichmäßig; keine Hotspots

Gefahr von Untergrundverlusten, wenn keine/zu geringe Dämmung unter der Platte (z. B. +≈ 11,52 kWh/Tag ungedämmt vs. ≈ **2,58 kWh/Tag** mit **100 mm XPS**)

Durch Rohrabstand/Vorlauf begrenzt; hohe Rampen führen zu großen ΔT im Beton \rightarrow nicht empfohlen

Sehr gut, wenn Untergrund **gedämmt**; ohne Dämmung unnötige Verluste in den Boden

Effizient: Grundlast ideal über Flächenheizung, konstant

Wegen Trägheit: langsamer Ausgleich (stundenweise)

Geringe Strömung, Biofilm an Wänden bleibt Mehr Strömung; Stagnation vermeiden niedrig; eigener geschlossener Heizkreis (keine tägliche Spülpflicht)

Düsen (direkter Wärmeeintrag ins Wasser)

Erwärmtes Poolwasser (über WT) wird eingedüst, durchmischt das Becken direkt

Schnell (direkte Einmischung): Effekt nach **0,5–2 h**, stabil nach **2–4 h**

Ebenfalls gut, aber lokal kurzzeitig wärmer im Düsennahbereich (mischt sich rasch) Keine Bodenverluste; geringfügig höhere Strömung/Umwälz-Wärmeverluste bei offenem Becken — mit Abdeckung

Durch Wärmetauscherleistung und Pumpenleistung limitiert; +3-4 K/Tag technisch möglich (Achtung Biologie/ΔT-Management)

Sehr gut; praktisch keine "Bauteilverluste": Effizienz hängt von Abdeckung & WP-COP ab

Effizient: Grundlast geht,

vernachlässigbar

Feinregelung/Peaks besonders gut

Schneller Ausgleich möglich (z. B. 0,50 K ≈ 27,91 kWh ⇒ bei 12 kW ≈ 2,33 h)

(mehrfach tägliche Umwälzung), hygienisch gut geplant

Vergleich

Wie lange dauert...?" (bei +1,50 K/Tag, abgedeckt)

```
+1,50 K: 1,00 Tag (thermisch 83,72 kWh + Verluste 42,14 kWh \rightarrow 125,86 kWh). +3,00 K: 2,00 Tage (thermisch 167,44 kWh + 2 \times 42,14 kWh \rightarrow 251,72 kWh).
```

+4,00 K: 2,67 Tage (thermisch 223,26 kWh + 2,67× 42,14 kWh \rightarrow 335,91 kWh).

Faustformel Leistung: Für +1,50 K/Tag brauchst du im Mittel ≈ 125,86 kWh/24 h = 5,24 kW (thermisch). Mit COP = 4,00 ⇒ 1,31 kW elektrischer Durchschnitt über 24 h (praktisch als lastgeführte Taktung).

Welche Lösung ist "effizienter"?

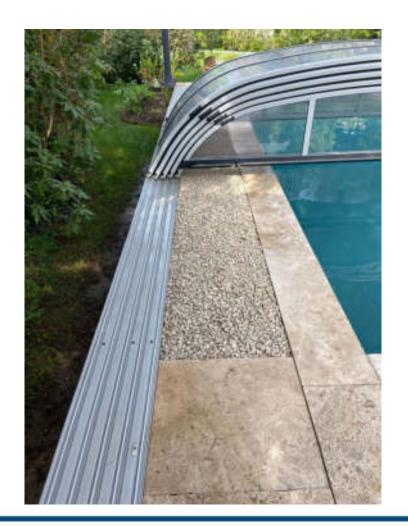
- Mit guter Abdeckung und gedämmter Bodenplatte sind beide sehr effizient.
- Flächenheizung punktet bei Stabilität & Gleichmäßigkeit (Grundlast), Düsen bei Schnelligkeit & Nachtauskühlungsausgleich (Peaks).
- Wichtigster Hebel insgesamt: Abdeckung (Verdunstung \downarrow , Strahlung \downarrow , "Luftwärmeverlust" \downarrow). Danach Leitungsdämmung und Filterabdeckung.
- Empfehlung in der Praxis: Kombination aus Flächenheizung (Grundlast, konstant) + Düsen (Feinregelung/Peaks) so nutzt du beides optimal.

Kurzer Merksatz

- Energie je 1,00 K in 48 m³: 55,81 kWh.
- +1,50 K/Tag (mit Abdeckung): ≈ 125,86 kWh/Tag (inkl. Verluste).
- Fläche = stabil/gleichmäßig (träge); Düsen = schnell/reaktiv (direkt).
- Abdeckung macht den Unterschied ohne sie explodieren die Verluste.

3.4 Poolabdeckung (Energie & Hygiene)

- 1. > 70–90 % Reduktion der Verdunstung (je nach System)
- 2. Schwebende Abdeckung bevorzugt (Gasaustausch, weniger Einträge)
- 3. Keine bioziden/Phosphor-freisetzenden Materialien
- 4. Filter niemals luftdicht abdecken (O₂-Haushalt)



3.5 Filter & Leitungen

- 1. Filterfläche ≈ 0,20 × Beckenfläche (bei ~1 m Filterhöhe) → zusätzliche
 Verdunstung
- 2. Filter abdecken/isolieren;
 O₂-Versorgung sicherstellen
- 3. Leitungen erdverlegt: Dämmung ≥ 30 mm empfohlen

Leitungswärmeverluste & Dämmung

- Annahmen (konkret & konsistent)
- Rohrabmessungen: Innen-Ø 50 mm \Rightarrow r1=25,00 mmr_1=25mm; Außen-Ø 63 mm \Rightarrow r2=31,50 mm
- **Dämmung:** 20,00 mm \Rightarrow r3=51,50 mmr_
- Länge gesamt: L=10,00 m \rightarrow 8,00 m erdverlegt, 2,00 m oberirdisch
- Temperaturen: Wasser 26,00 °C; Luft 18,00 °C (ΔTLuft=8,00 K); Boden in 0,5 m 12,00 °C (ΚΔΤΒοden=14,00K)
- Wärmeübergang außen (oberirdisch): ho=10,00 W/m²Kh
- Leitfähigkeiten: Rohr kpipe=0,40 W/mK, Dämmung kins=0,035 W/mKk, Boden ksoil=1,30 W/mK
- Boden-"Fernradius": r∞≈1,00 (≈ 2× Verlegetiefe)
- Wärmepumpe (für Stromäquivalent): COP 4,00

Verwendete Formeln (Zylinder-Wärmeleitung, stationär)

$$\begin{split} R_{\rm Rohr} &= \frac{\ln(r_2/r_1)}{2\pi k_{\rm pipe}}, \quad R_{\rm Dimm} = \frac{\ln(r_3/r_2)}{2\pi k_{\rm ins}} \\ R_{\rm autlen, Luft} &= \frac{1}{2\pi r_{\rm autlen} h_o}, \quad R_{\rm Boden} = \frac{\ln(r_\infty/r_{\rm autlen})}{2\pi k_{\rm soil}} \\ \dot{q}' &= \frac{\Delta T}{R_{\rm ges}}, \quad \dot{Q} = \dot{q}' \cdot L, \quad E_{\rm Tag} = \dot{Q} \cdot \frac{24}{1000} \ ({\rm kWh/Tag}) \end{split}$$

Leitungswärmeverluste & Dämmung

Ergebnis-Tabelle (10,00 m gesamt)

Fall	Segment	Verlust (W)	kWh/Tag
Ohne Dämmung	Oberirdisch 2,00 m	26,79	0,64
	Erdverlegt 8,00 m	217,36	5,22
	Summe	244,15	5,86
Mit Dämmung 20,00 mm	Oberirdisch 2,00 m	6,07	0,15
	Erdverlegt 8,00 m	41,63	1,00
	Summe	47,70	1,14

Saison- und Stromäquivalente

Kennwert	Ohne Dämmung	Mit 20,00 mm
Energie/Tag (kWh/Tag)	5,86	1,14
Saison 180 Tage (kWh)	1.054,72	206,05
WP-Strom/Tag (COP 4,00)	1,46 kWh	0,29 kWh

Interpretation:

Schon bei nur **10,00 m** Leitungslänge fällt der Unterschied deutlich aus: 20 mm Dämmung reduziert die Leitungsverluste von 5,86 auf 1,14 kWh/Tag (-≈ 80 %). Über **180 Tage** spart das **~848,67** kWh Wärme bzw. ~212,17 kWh Strom (bei **COP 4,00**). Der größere Anteil entfällt auf den erdverlegten Abschnitt (hier mit $\Delta T=14 \text{ K}Delta T=14\,K\Delta T=14\text{K}); gute$ **Dämmqualität** ist dort besonders wirksam.

- 1. Temperatursprünge > 5 K vermeiden → Biofilmleistung sinkt, Nährstoffe werden frei
- 2. O₂-Löslichkeit sinkt bei hoher Temp. → Risiko anaerober Prozesse/Phosphat
- 3. Hygiene: Legionella (25–45 °C), Pseudomonas (Stagnation)
- 4. Pflege: Biofilmernte (Filter voll/Saisonende)

3.7 Wirtschaftlichkeit – Grundsätze

- 1. Heizbedarf ≈ Tagesverluste solare Gewinne
- 2. WP-Strom ≈ Heizenergie / COP
- 3. Größte Hebel: Abdeckung, Filterabdeckung, Rohrdämmung
- 4. Konstante Temperatur statt häufiges Auf/Ab-Heizen

4. Physik – Formeln (erläutert)

- 1. Verdunstung: Dampfdruckdifferenz × (25 + 19·Wind) dominanter Pfad
- 2. Strahlung: langwellige Auskühlung; Nächte/klarer Himmel
- 3. Luftwärmeverlust (Konvektion): $h \cdot A \cdot \Delta T$; Wind erhöht h deutlich
- 4. Alle Größen in SI-Einheiten; Werte in kWh/Tag (auf 2 Nachkommastellen)

Hier sind die intapolierte Monats-Wassertemperaturen eines
ungeheizten 8×4×1,5 m Pools (32 m² Wasserfläche) für
österreichisches Tiefland (Mittel aus Graz/Linz/Wien), ohne
Überdachung. Grundlage ist ein tägliches Energiegleichgewicht:
solare Gewinne (GHI, Absorption 75 %) vs. Verluste
(Verdunstung, Konvektion, langwellige Abstrahlung), mit
realistischen Monatswerten für Lufttemperatur, rel. Feuchte und
Wind.

- ohne Abdeckung (immer offen)
- mit Nacht-Abdeckung (nur 8 h offen / 16 h abgedeckt; weiterhin keine Heizung)

Interpretation:

- Ohne Abdeckung folgt der Pool grob der Lufttemperatur +
 2-4 K im Sommer (durch Sonne), fällt in Übergangsmonaten aber rasch ab.
- Nacht-Abdeckung (passiv, ohne Heizen) hebt die Sommer-Monatsmittel um ~2-3 K an (Juli ≈ 26,22 °C) und reduziert die Nachtverluste stark.
- In Frühjahr/Herbst sind 15–21 °C (mit Nacht-Abdeckung) realistisch, 12–19 °C ohne.

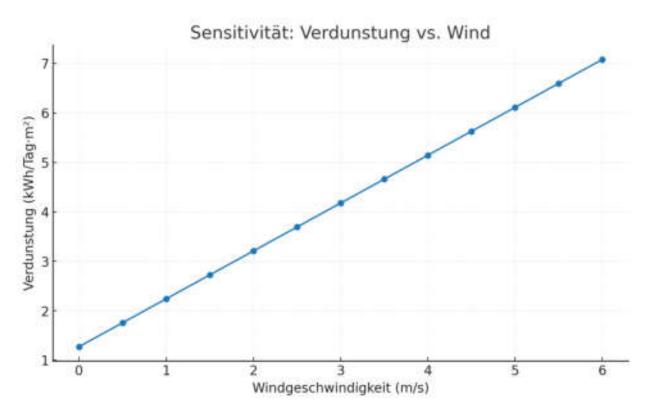
Hinweis: Werte sind **Monatsmittel** (glätten Hitzewellen/Kaltlufteinbrüche). Ein sonniger Mehrtages-Peak kann Tages-Maxima **über** diesen Mittelwerten bringen.

Monat	Ø Luft (°C)	Wasser ohne Abdeckung	Wasser mit Nachtabdeckung
Jan	0,00	-0,13	0,40
Feb	2,00	3,06	3,95
Mrz	7,00	8,94	10,51
Apr	11,00	13,26	15,29
Mai	16,00	18,58	21,09
Jun	19,00	21,52	24,24
Jul	21,00	23,37	26,22
Aug	20,00	22,09	24,60
Sep	16,00	17,62	19,46
Okt	11,00	11,92	13,11
Nov	6,00	5,93	6,53
Dez	2,00	0,98	1,71

Berechnungsgrundlagen

- Heizbedarf & solare Einstrahlung Österreichischer Durchschnitt
- Nicht-gebirgige Regionen; Mittelwert aus Graz, Linz, Wien. COP = 3 und 4 separat.
- Pool 8×4×1,5 m (48 m³), Ziel 26,00 °C.
- Parameter & Quellen (kurz):
- Wärmekapazität Wasser: 1,16 kWh/m³K; Volumen: 48,00 m³
- Energie je 1 K: 55,68 kWh; für 3 K: 167,04 kWh
- GHI: PVGIS-typische Monatswerte (horizontal), Österreich-Mittel
- Klima (Ta, r.F., Wind): typische Monatsmittel (Österreich Tiefland)
- Abdeckung: Verdunstung −95 %, Konvektion −30 %, Strahlung −10 % (EPA/DOE)
- Solare Absorption: offen ~75 % (FSEC), opak ≈ 0 %
- Wind: 2,00 m/s
- Filter separat betrachtet; Solare Zugewinne nur über Wasserfläche berücksichtigt.
 Interpolation Wien, Graz, Linz

Tages-Wärmeverluste nach Szenario



Szenarien: offen/abgedeckt; Filter offen/abgedeckt. 8×4×1,5 m; 26 °C; 18 °C; 60 % r.F.; 2 m/s

Sensitivität: Verdunstung vs. Wind

Je höher der Wind, desto größer der Energieverlust pro m²

Tagesverluste

Szenario	Verdunstung (kWh/Tag)	Strahlung (kWh/Tag)	Luftwärmeverlust (kWh/Tag)	Summe Verluste (kWh/Tag)
Pool offen, Filter offen	126.02	67.97	73.54	267.53
Pool offen, Filter abgedeckt	97.88	66.28	68.07	232.22
Pool abgedeckt, Filter offen	40.74	62.86	56.95	160.55
Pool abgedeckt, Filter abgedeckt	12.60	61.17	51.48	125.25

Verluste aus Verdunstung, Strahlung an den Himmel und Konvektion. (Juni-Tag, ohne Solar; 26,00 °C)

Solare Zugewinne pro Tag Tag

Monat	GHI (kWh/m²·d)	Solargewinn offen (kWh/Tag)	Solargewinn klare Abdeckung (kWh/Tag)	Solargewinn opak (kWh/Tag)
April	4.20	94.08	79.97	0.00
Mai	5.10	114.24	97.10	0.00
Juni	5.60	125.44	106.62	0.00
Juli	5.80	129.92	110.43	0.00
August	5.10	114.24	97.10	0.00
September	3.90	87.36	74.26	0.00
Oktober	2.70	60.48	51.41	0.00

GHI = Globalstrahlung horizontal; klare Abdeckung: Transmission ~0,85 ⇒ effektiv 0,595.

Tageswerte bei 26° C

Szenario	Verdunstung (kWh/Tag)	Strahlung (kWh/Tag)	Luftwärmeverlust (kWh/Tag)	Summe (kWh/Tag)
Pool offen, Filter abgedeckt	106.1	76.55	90.76	273.41
Pool offen, Filter offen	136.61	78.5	98.06	313.16
Pool abgedeckt, Filter abgedeckt	13.66	70.65	68.64	152.95
Pool abgedeckt, Filter offen	44.17	72.59	75.94	192.7

Δ +3 K Setpoint – Mehrbedarf (pro Tag)

Szenario	Mehrbedarf +3 K (kWh/Tag)
Pool offen, Filter abgedeckt	84.1
Pool offen, Filter offen	96.55
Pool abgedeckt, Filter abgedeckt	46.38
Pool abgedeckt, Filter offen	58.82

Netto-Heizbedarf

Szenario	Verluste (kWh/Tag)	Solar (Juni) (kWh/Tag)	Netto- Heizbedarf (kWh/Tag)
Pool offen, Filter offen	267.53	125.44	142.09
Pool offen, Filter abgedeckt	232.22	106.62	125.60
Pool abgedeckt, Filter offen	160.55	106.62	53.93
Pool abgedeckt, Filter abgedeckt	125.25	106.62	18.63

Netto = Verluste – solare Zugewinne (Juni). Kein negativer Heizbedarf ausgewiesen.

Netto-Heizenergie (nach Solar), kWh

ZEITRAUM	OHNE ABDECKUNG (IMMER OFFEN)	MIT NACHTABDECKUNG (8 H OFFEN / 16 H ABGEDECKT)
1 Tag (Juni)	45,60	0,00
90 Tage (Jun– Aug)	4.108,40	0,00
180 Tage (Apr–Okt)	21.453,20	3.189,20
365 Tage (Jahr)	57.412,40	17.195,07

Interpretation:

- Im Sommer (Jun-Aug) kann eine
 Nachtabdeckung die Tagesbilanz oft auf
 ~0 kWh drücken (Solar deckt die
 Tagesverluste).
- In Frühjahr/Herbst (Apr/Mai/Sep/Okt)
 bleibt bei Nachtabdeckung ein moderater
 Rest von ~3.200 kWh über die Saison.
- Ohne Abdeckung eskalieren die Verluste (v. a. Verdunstung): ~21,5 MWh pro Saison sind realistisch.

Österreich-Mittel, saisonal gewichtet; 1 Tag = Juni-Tag

Wärmepumpen-Strombedarf

Zeitraum	Ohne Abdeckung COP 3	Ohne Abdeckung COP 4	Nachtabdeckung COP 3	Nachtabdeckung COP 4
1 Tag (Juni)	15,20	11,40	0,00	0,00
90 Tage (Jun– Aug)	1.369,47	1.027,10	0,00	0,00
180 Tage (Apr– Okt)	7.151,07	5.363,30	1.063,07	797,30
365 Tage (Jahr)	19.137,47	14.353,10	5.731,69	4.298,77

Wichtig: Diese Werte sind **inkl.** täglicher Solar-Erwärmung (sie reduziert die Heizlast am Tag). Die **großen Unterschiede** zwischen "ohne Abdeckung" und "Nachtabdeckung" kommen daher, dass Verdunstung **der dominante Verlustpfad** ist.

Monatliche Tagesbilanzen

Monat	Gewichteter Tages-Verlust mit Nachtabdeckung	Solar (offen, 0,75)	Netto (kWh/Tag)
Apr	123,33	100,80	22,53
Mai	106,67	122,40	0,00
Jun	86,67	134,40	0,00
Jul	83,33	139,20	0,00
Aug	86,67	122,40	0,00
Sep	110,00	93,60	16,40
Okt	130,00	64,80	65,20

Für die 180-Tage-Saison relevant: Apr…Okt. Gewichteter Verlust = ⅓ Tages-Offen-Verluste + ⅔ Nacht-Abdeck-Verluste; Solar wird tagsüber aufgenommen.

Zeitraum	Szenario	Bruttoverluste (kWh)	Solare Gewinne (kWh)	Netto-Heizenergie (kWh)
1 Tag (Juni-Tag)	Pool offen, Filter offen	166.84	134.40	32.44
90 Tage (Juni–Aug)	Pool offen, Filter offen	13778.82	12141.60	1766.80
180 Tage (Apr–Okt)	Pool offen, Filter offen	43797.71	23776.80	20150.49
365 Tage (Jahr)	Pool offen, Filter offen	104825.57	30717.60	74237.55
1 Tag (Juni-Tag)	Pool offen, Filter abgedeckt	159.22	134.40	24.82
90 Tage (Juni–Aug)	Pool offen, Filter abgedeckt	13138.23	12141.60	1328.64
180 Tage (Apr–Okt)	Pool offen, Filter abgedeckt	41954.70	23776.80	18509.91
365 Tage (Jahr)	Pool offen, Filter abgedeckt	100776.96	30717.60	70391.37
1 Tag (Juni-Tag)	Pool abgedeckt, Filter offen	128.72	0.00	128.72
90 Tage (Juni–Aug)	Pool abgedeckt, Filter offen	10574.65	0.00	10574.65
180 Tage (Apr–Okt)	Pool abgedeckt, Filter offen	34580.84	0.00	34580.84
365 Tage (Jahr)	Pool abgedeckt, Filter offen	84580.50	0.00	84580.50
1 Tag (Juni-Tag)	Pool abgedeckt, Filter abgedeckt	121.10	0.00	121.10
90 Tage (Juni–Aug)	Pool abgedeckt, Filter abgedeckt	9934.06	0.00	9934.06
180 Tage (Apr–Okt)	Pool abgedeckt, Filter abgedeckt	32737.53	0.00	32737.53
365 Tage (Jahr)	Pool abgedeckt, Filter abgedeckt	80531.90	0.00	80531.90

		~ ∞
Zeitraum	Szenario	Netto-Heizenergie (kWh)
1 Tag (Juni-Tag)	Pool offen, Filter offen	32.44
90 Tage (Juni–Aug)	Pool offen, Filter offen	1766.80
180 Tage (Apr–Okt)	Pool offen, Filter offen	20150.49
365 Tage (Jahr)	Pool offen, Filter offen	74237.55
1 Tag (Juni-Tag)	Pool offen, Filter abgedeckt	24.82
90 Tage (Juni–Aug)	Pool offen, Filter abgedeckt	1328.64
180 Tage (Apr–Okt)	Pool offen, Filter abgedeckt	18509.91
365 Tage (Jahr)	Pool offen, Filter abgedeckt	70391.37
1 Tag (Juni-Tag)	Pool abgedeckt, Filter offen	128.72
90 Tage (Juni–Aug)	Pool abgedeckt, Filter offen	10574.65
180 Tage (Apr–Okt)	Pool abgedeckt, Filter offen	34580.84
365 Tage (Jahr)	Pool abgedeckt, Filter offen	84580.50
1 Tag (Juni-Tag)	Pool abgedeckt, Filter abgedeckt	121.10
90 Tage (Juni–Aug)	Pool abgedeckt, Filter abgedeckt	9934.06
180 Tage (Apr–Okt)	Pool abgedeckt, Filter abgedeckt	32737.53
365 Tage (Jahr)	Pool abgedeckt, Filter abgedeckt	80531.90

Netto-Heizenergie (kWh)

121.10

9934.06

32737.53

80531.90

1 Tag (Juni-Tag)	Pool offen, Filter offen	32.44
90 Tage (Juni–Aug)	Pool offen, Filter offen	1766.80
180 Tage (Apr–Okt)	Pool offen, Filter offen	20150.49
365 Tage (Jahr)	Pool offen, Filter offen	74237.55
1 Tag (Juni-Tag)	Pool offen, Filter abgedeckt	24.82
90 Tage (Juni–Aug)	Pool offen, Filter abgedeckt	1328.64
180 Tage (Apr–Okt)	Pool offen, Filter abgedeckt	18509.91
365 Tage (Jahr)	Pool offen, Filter abgedeckt	70391.37
1 Tag (Juni-Tag)	Pool abgedeckt, Filter offen	128.72
90 Tage (Juni–Aug)	Pool abgedeckt, Filter offen	10574.65
180 Tage (Apr–Okt)	Pool abgedeckt, Filter offen	34580.84
365 Tage (Jahr)	Pool abgedeckt, Filter offen	84580.50

Szenario

Zeitraum

1 Tag (Juni-Tag)

365 Tage (Jahr)

90 Tage (Juni–Aug)

180 Tage (Apr–Okt)

Pool abgedeckt, Filter abgedeckt

Pool abgedeckt, Filter abgedeckt

Pool abgedeckt, Filter abgedeckt

Pool abgedeckt, Filter abgedeckt

Szenario-Erläuterung

Szenario	Erläuterung (Kurz)
Pool offen, Filter offen	Höchste Verluste; Solar am höchsten, dennoch i. d. R. positiver Netto-Bedarf, v. a. bei Wind.
Pool offen, Filter abgedeckt	Solar bleibt hoch; Filterverluste gedämpft.
Pool abgedeckt, Filter offen	Verluste stark reduziert; Solar geringer (klare Abdeckung).
Pool abgedeckt, Filter abgedeckt	Minimalverluste; mit klarer Abdeckung oft nahe Null- Bedarf tagsüber.

Einmaliges Aufheizen 48 m³ um 3 K (kWh)

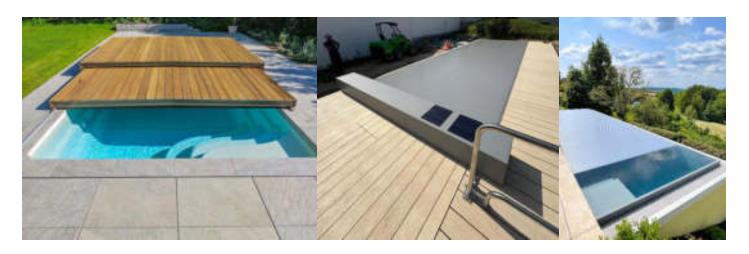
Vorgang	Thermische Energie (kWh)	WP-Strom COP 3,0 (kWh)	WP-Strom COP 4,0 (kWh)
48,00 m³ um 3,00 K	167.44	55.81	41.86

Merksatz & Hinweise

- "Die Sonne ist der wichtigste Heizpartner –
 Abdeckung + WP → effizient."
- Netto-Heizbedarf = Verluste − Solar; negative
 Werte → 0 (keine Heizung).
- Abdeckung ist der stärkste Hebel (Verdunstung ≈ 70–95 % der Verluste).
- COP 4 spart ≈ 25 % Strom ggü. COP 3 bei gleichem Wärmebedarf.

•

- Abdeckung reduziert Verluste um bis zu 70 %
- Abdeckung ist der stärkste Hebel (Verdunstung ≈ 70–95 % der Verluste).
- Solarenergie deckt im Sommer nahezu den gesamten Bedarf
- Wärmepumpe (COP 3–4) sinnvoll für Übergangszeiten
- COP 4 spart ≈ 25 % Strom ggü. COP 3 bei gleichem Wärmebedarf.
- Leitungsdämmung entscheidend zur Minimierung von Wärmeverlusten
- Biologische Aspekte: Sauerstoffmangel & Legionellenrisiko bei Überhitzung beachten


- Pool stets abdecken (Verdunstung = Hauptverlust)
- Wärmepumpe nur zur Spitzenlastabdeckung einsetzen
- Solare Gewinne bewusst nutzen: Frühling/Herbst ≈ 70 %, Sommer ≈ 95 %
- Leitungen gut dämmen (20 mm Isolierung reduziert Verluste um >80 %)
- Biologie stabil halten: keine Überheizung >28 °C, Sauerstoffmonitoring
- Regelmäßige Kontrolle auf hygienische Risiken (Legionellen)

Vielen Dank für Ihre Aufmerksamkeit

 Heizen naturnaher Badegewässer ist technisch möglich, aber nur mit Kombination aus Abdeckung, effizienter Technik und ökologischer Rücksicht nachhaltig.

