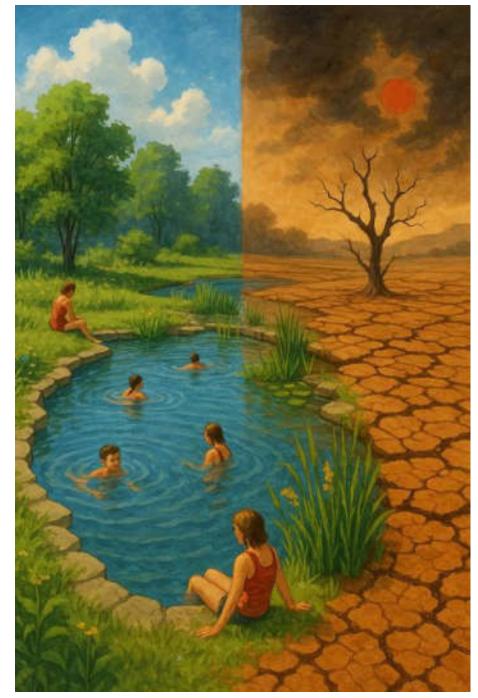
Naturfreibad Winsen – Nachhaltig, für ein gutes Klima

Winsen natural outdoor pool – sustainable for a good climate



It's getting hot in here...

- Heißere Sommer, längere
 Trockenzeiten, mehr Starkregen¹
- Planung der Zukunft ist klimaresilient
 - Klimawandel wird mitgedacht
 - Planung trägt sowohl bei zu einem besseren Klima
 - Vor Ort
 - Global
 - (...und im miteinander ©)
- Planung der Zukunft ist sparsam im CO₂-Verbrauch
 - Im Bau
 - Im Betrieb
 - Auswahl von Materialien mit einer niedrigen CO2 -Bilanz
- Was bedeutet das für die Planung von Naturfreibädern?

It's getting better all the time...

Das kommt mir doch bekannt vor...

- Modellprojekt Nullenergiebad Kirchheim (Bau 2010)
- Ideen können auch in privaten Anlagen umgesetzt werden

Modellprojekt

Untersuchung der Nährstoffeinträge, Hygieneparameter und des Energiekonzeptes für ein Naturbad am Beispiel des Naturbadesees im Feriendorf Eisenberg "Günter Richta" in Kirchheim

Abschlussbericht über ein innovatives Modellprojekt, gefördert unter dem AZ: 26806-23 von der Deutschen Bundesstiftung Umwelt

von

Herrn Hannes Kurzreuther und Herrn Sebastian Flohre, Firma Polyplan Herrn Dr. E.-Peter Kulle und Herrn Dipl.-Ing. J. Müller, MFPA Weimar Herrn Thomas Rott, Landeshauptstadt Hannover

November 2013

Sale I see 12

Fazit

Ermittlung von Nähmtoffeinträgen.

Die Untersechung belegt, dass die Anlage bezüglich der nähmnefflichen und hygienischen Betantung eine hobe Betriebsstabilität und Sicherheit aufweint. Im Jahr der Betriebsaufrahme war eine gewisse Einfahrphase auchzeweisen. Die Probenshme außerhalb der Salson hat gezeigt, dass auch dann ein Nähstesfleistrag durch Regen und Luft stattlindet. Da die gefonderen Böchseweite der Nährstoffe Phosphor, Nitrat-N und Ammonium-N sowie der Indikatorhakterien Ecoli und Esterokokoken wilhend der Projektlaufzeit unhezu anmahmalos eingeholten wieden, ist festzantellen, dass naturnabe Schwimm- und Badeteiche mit biologischer Wassenaufbereitung eine Alternative zu berkheunflichen Chorhädern danstellen.

Nullcoetgie Bad

Die Untersachung hat ergeben, dass der Gesamtssonsbedarf der Antage nur 2.550 kWh in 2 kahrun sehr gering war. Vergesichture Naturhäder haben einem Jahrenverbrauch von ca. 20.000 kWh im Jahr. Die Photovoltaskantage komme 92 % und damit den Gridteil des Strombedarfen docken. Danst massin inzudem noch Strom aus dem Netz zugeführt werden, ein Null Energiebad ist nicht entstanden. In Zusammenhaug mit Projektreil 1 ist wichtig festzusellen, dass die Anlage trotz der konstruktiven und onergetischen Malbrahmen die hygienischen und physikalisch-chemischen Genrauerte fast annualmisös erfullt hat und eine sehr gute Wasserquolität aufwies.

Homele Sealanthing Unwell ♥ Ander Some | ♥ 4000 Combins. ♥ Tel 1940/9011 € No. (1940/01) 190 ♥ http://www.db.dr

Für ein gutes menschliches Klima

Entscheidung für ein Naturfreibad auf ehemaligem Landesgartenschaugelände nach Bürgerbefragung.

→ Klimaschutz funktioniert am nachhaltigsten über Beteiligung und Akzeptanz

Bauherr:

Stadt Winsen (Luhe)

Ort

Winsen (Luhe)

Ausführungszeit

Okt. 2022 bis April 2025

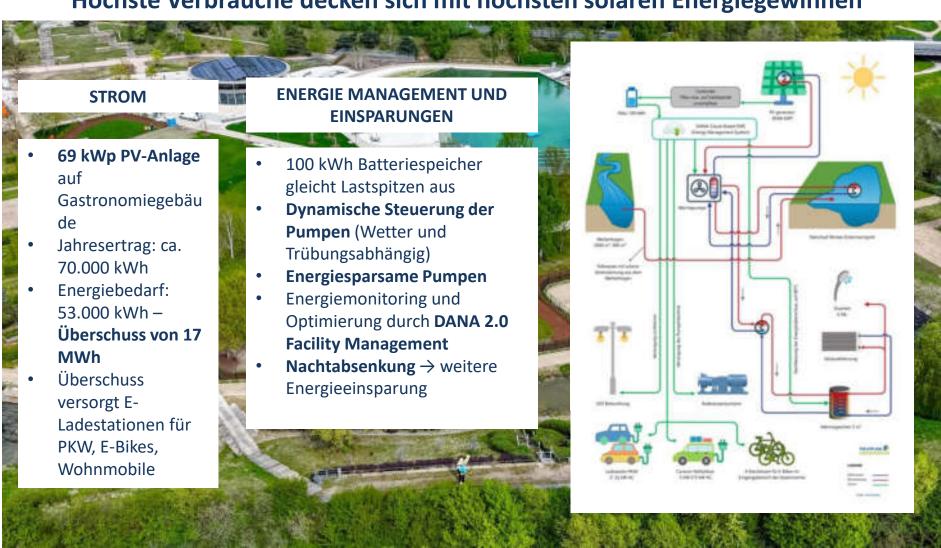
Inbetriebnahme:

Mai 2025

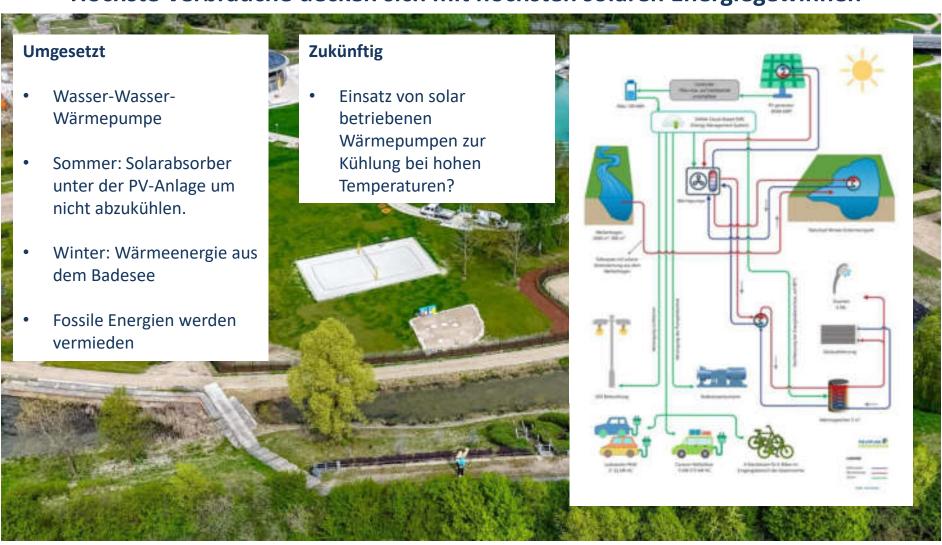
Baukosten:

ca. 10 Mio. Euro

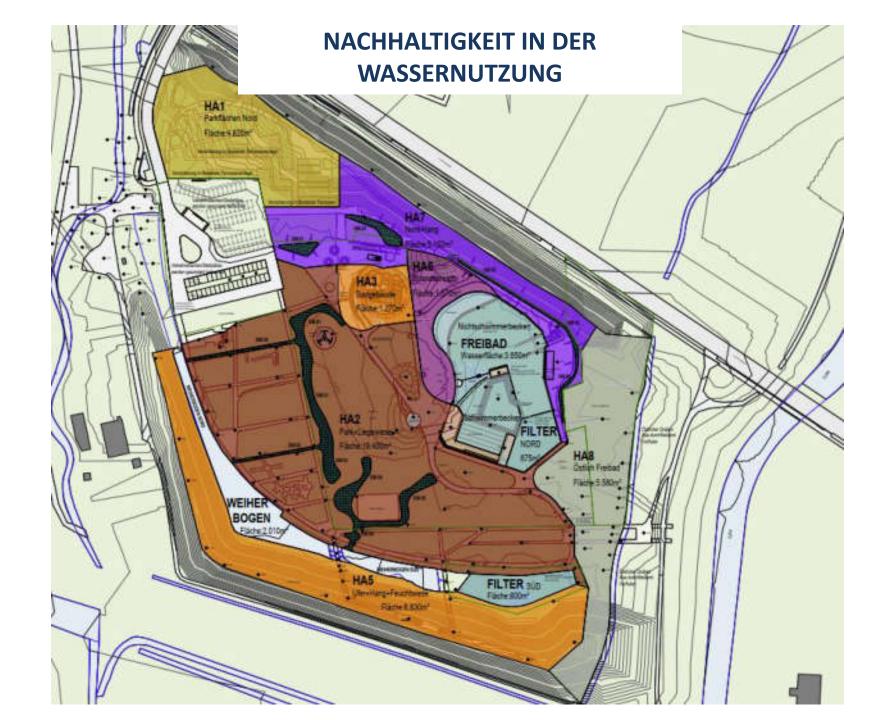
Wasserfläche: 3.465m²
Wasservolumen: 4.120m³
Nennbesucherzahl: 1.913/Tag



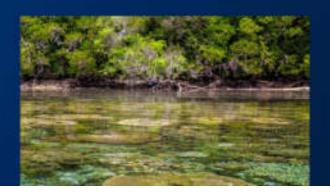
NACHHALTIGKEIT BEIM BAUEN Umgesetzt Beispiele für nicht Umgesetzte Zukünftig Ursprungsplanung Hauptgebäude in Holzbauweise in KfW 40 Beton mit CEM III (B) → bessere Plus (energieeffizientester und technologisch Nutzung von PU Schaumplatten CO₂ Bilanz anspruchsvollste Standard: PV+ Speicher, mit Epoxidharzbeschichtung für Beckenkonstruktion aus Folie Lüftung mit Wärmerückgewinnung, Bodenplatten um Beton und Holz regenerative Heizungssysteme, Monitoring) einzusparen. Nach Prüfung Statt rutschen Kletterwände. Minimaler Einsatz von Stahlarmierung und Ungeeignet (Punktbelatsung, zu Netze etc. (ohne **Beton** (Niedriger Grundwasserstand daher Instabil für Folienbleche, zu **Energieaufwand)** wenig Druck) teuer). Filter mit niedrigen Förderhöhen Materialien wurden hinsichtlich ihres GWP Recycling Kunststoff Bolen – zu wie Nassfilter und (Global Warming Potential) geprüft und uneben Hydrobotaniken Entsprechend wurden ressourcenschonende Höheren Anteil an Recyclingbeton → Nicht möglich Baustoffe ausgewählt. Z.B.: Verwendung von Recycling Beton weil Richtlinie fehlte (30%) – auf Risiko des Betreibers, da nur bis 4% aufgrund aktueller Richtlinien Gewährleistung gegeben wird Verwendung von Kebony Holz – lange Haltbarkeit und gute CO2 Bilanz


NACHHALTIGKEIT BEI DER ENERGIENUTZUNG

Höchste Verbräuche decken sich mit höchsten solaren Energiegewinnen



Höchste Verbräuche decken sich mit höchsten solaren Energiegewinnen



Nature 2030 -

Resources *

Get Involved

Nature-based Solutions

Nr.	Kriterium	Beschreibung	Winsen	
1	Gesellschaftliche Herausforderungen	Muss auf klar definierte gesellschaftliche Probleme reagieren (z. B.		
	adressieren	Klimawandel, Hochwasserschutz, Biodiversität).		
2	Gestützt auf Biodiversität und	Naturnahe oder natürliche Systeme als Kernbestandteil, keine rein		
	Ökosystemprozesse	technische Begrünung.		
3	Wirkungsvoll im Maßstab	Lösung muss so dimensioniert sein, dass sie messbaren Nutzen auf lokalem,	✓	
		regionalem oder größerem Maßstab entfaltet.		
4	Langfristige Wirksamkeit und	Berücksichtigung ökologischer, ökonomischer und sozialer Nachhaltigkeit,	✓	
	Anpassungsfähigkeit	inklusive Anpassung an Klimawandel.		
5	Verschiedene Vorteile (Co-Benefits)	NbS sollen mehrere Vorteile gleichzeitig liefern: Biodiversität, Gesundheit,	✓	
		Erholung, Resilienz etc.		
6	Inklusive Governance	Partizipation von Interessengruppen, faire Entscheidungsprozesse,	✓	
		traditionelles Wissen berücksichtigen.		
7	Ökonomische Tragfähigkeit	Finanzielle Nachhaltigkeit und faire Kosten-Nutzen-Verteilung müssen	✓	
		gewährleistet sein.		
8	Positiver Beitrag zu Biodiversität und	Maßnahmen dürfen Biodiversität nicht schädigen, sondern sollen sie	✓	
	Wohlbefinden	fördern und Lebensqualität verbessern.		

Fazit

- Beispiel für Nature based solutions
- Wir müssen ökologisch besser werden, werden dabei aber auch Fehler machen und an vielen Stellen über unsere eigenen Füße stolpern und das in einer Gesellschaft, die Sicherheit über alles liebt.
- Maßnahmen erfolgreich umgesetzt im Bezug auf Nachhaltigkeit beim Bau, bei der Energienutzung und der Wassernutzung
- Eine energetische Auswertung des ersten Betriebsjahres steht noch aus
- Wir müssen ökologisch besser werden, werden dabei aber auch Fehler machen und an vielen Stellen über unsere eigenen Füße stolpern und das in einer Gesellschaft, die Sicherheit über alles liebt.
- Große zukünftige Potentiale:
 - bei Materialienauswahl
 - Nachtabsenkung
 - Weitere Energieoptimierung
- Besser wird's nur wenn neue Wege beschritten werden, wenn wir mutig sind und lernen

It's getting better all the time...*

Performance of 21 Public Natural Swimming Pools (NSP) from 2015 – 2023

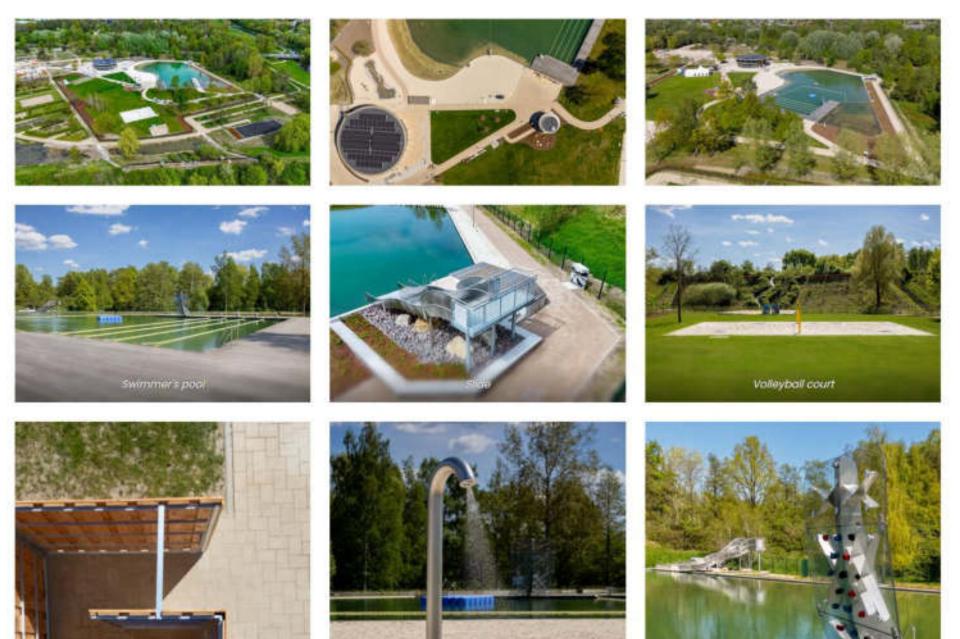
Hennes Kursteuther, Sofie Copro, Polyplen - Kreikenbeum Gruppe Gnibtt

Summary

The following study examines operating data from 2s public natural swimming pools (NSP) in the inperating period between 2015 - 2028. The analysed parameters where chosen according to the current FLL-guideline³ AP data sets are taken from the current database for NSPs (DANA 2.0)³. The analysis of the data showed that the tested systems function in accordance with the requirements of the FLL-guideline. The total number of limit value and recomended value violations was 2-4.8%.

Background

NSPs are pools with biological water treatment. The used treatment processes purify the water using plant and animal organisms and microorganisms supported by filtration mechanisms.


in Germany, the first guideline for NSPs was published in 2003. This was revised in 2011³ and has been valid for both planning and operation ever since, in order to examine how public natural outdoor pools work in practice, 21 pools were selected for evaluation (Table 1). The selection criterion was that as much off he required data as possible was available in the period 2015-2023 in DANA 2.0.

Sales I Evaluated pools, marter data and mean values

No.	Total pool surface [m ²]	Total pool volume [m ³]	Dry filter [m²]	Submerged filter [m ²]	Nominal number of visitors	Years
1	2299	3360	538	673	1013	2015-2023
3	880	2000	900	200	1571	2015-2023
3	3480	4415	750	303	1600	2015-2023
4	1265	1020	1200		1700	2015-2029
5	4850	4200		900	477	2021-2023
è	1950	5552	600	800	1500	2019-2023
,	1985	3190	750		1512	2019-2021
	1595	3100	510	224,4	3036	2015-2025
,	570	835	114	65	294	2021-2025
10	1875	2340	3.75	340	950	2015-2023
11.	2280	2530	1325		2650	2015-2021

FLL (2011) Paccommendations for Planning, Construction, Servicing and Operation of Outdoor Swimming Pools with Stolegies: Water Purification (Swimming and Bathing Ponds), Forschungsgeselbshaft
Landscheftzertwicklung Landschaftsteu e. V.

Forcesuther: Socilet. Bruns (2022) DANA 2.8 - Maintaining and Stevening von Naturfleitsädern, Anthir des Bedevesers. Bädertechnik, Wassereuftereitung, 10/2022, 672-663

Vielen Dank für die Aufmerksamkeit ©

Thank you for your attentiuon